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Preface

The purpose of this study was to validate the three-body

perturbation theory described by Dr. William Wiesel, in his paper

entitled, "Perturbation Theory in the Vicinity of a Periodic

Orbit by Repeated Linear Transformations". Mastering these

techniques would be a necessary first step to navigating a highly

perturbed region of space, such as that surrounding the Martian

moon Phobos. Any further developments in the understanding of

time-periodic systems in general, could reap great rewards in

several non-astronautical areas as well. The dynamics of

helicopter blades is a good example.

This entire study would not have been possible if not for

the extensive help I received from Dr. Wiesel himself. The

process began with many hours of tutoring on the major technical

points of the thesis. Each area discussed eventually became one

of the six different programs used during the course of the

study. I was given free reign of several different programs,

subroutines, and hard to find text books. If Dr. Wiesel didn't

already have a similar program to be modified, he would help me

lay out an algorithm that I could later encode. Dr. Wiesel also

devised several analytical tests that could be made to ensure

program accuracy.

For all of the reasons stated above, as well as the thrill

of showing someone that their ideas actually work, I consider

this thesis an overwhelming success. Yet there are still a great

deal of unanswered questions, and program modifications to make.
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I would also like to take this opportunity to thank my wife

Beth, for her support and understanding during this last year and

a half. Without her, the answer to the question, why bother ?,

would not have been so apparent.

Finally, I hereby dedicate this entire work to my very

special other Mom, Lynne, whose passing has opened my eyes to

what is truly important in this world.

David A. Ross

iii



Table of Contents

page

Preface ............ .......................... i..

List of Figures .. ............... ... ........... v

List of Symbols ......... ...................... . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . ix

I. Introduction .......... .................... 1

II. Historical Development ....... ............... 3

III. Theory ............ ....................... 4

The Restricted Three-Body Problem .......
The Restricted Three-Body Equations of Motion 7
Periodic Orbits and the Equations of Variation 9
Initial Condition Determination . ........ .. 13
The Surface of Section .... ............. .. 14
The Nearly-Periodic Trajectory (Modal Variables) 21
The Restricted Three-Body Perturbation Solution 31

IV. Hardware - Software ...... ................. . 34

V. Numerical Technique ...... ................. . 35

VI. Results and Discussion ..... .............. . 39

Nearly-Periodic Orbits in Modal Variables .
The Expanded Approximation vs. The Exact Case 54

VII. Conclusions and Recommendations ... ........... .. 61

The Modal Transformation and the Limits of the
Tangent Space . ...... .
The Expanded vs. the Exact Equations of Motion . 62

Appendix A: Code Validation and Error Determination . . . 64

Appendix B: Thesis Software ..... ............... . 66

Main Routines ...... ..............
Subroutines ..... ............... . 82

Bibliography ........ ....................... . 91

Vita ........... ........................... .. 92

iv



List of Figures

Figure page

1. Reference Frame for the Restricted Three-Body System . 6

2. Reference Frame used in the Surface of Section . . . 15

3. An Elliptical Trajectory Precessing About Primary i-g 19

4. The Surface of Section of the Elliptical Trajectory . 20

5. The Surface of Section for the Sun-Jupiter System . . 22

6. The Surface of Section for a Highly Perturbed System . 23

7. Magnified Periodic Region of Sun-Jupiter SOS Plot . 25

8. Magnified Periodic Region of Highly Perturbed System
SOS Plot ........ ....................... . 26

9. Reference Frame in Modal Coordinates .. ......... .. 30

10. Nearly-Periodic Orbits in the Vicinity of Two Exact
Integrals of Motion (Sun-Jupiter System) . . ... .. 40

11. Epoch and Hamiltonian Constants vs. Time in the
Vicinity of Two Exact Integrals of Motion
(Sun-Jupiter System) .... ............... ... 42

12. Nearly-Periodic Orbits in a Transition From Two Exact
Integrals of Motion to One (Sun-Jupiter System) . . . 43

13. Epoch and Hamiltonian Constants vs. Time in a
Transition From Two Exact Integrals to One
(Sun-Jupiter System) ..... ................. . 44

14. Nearly-Periodic Orbits in the Absence of a Second
Integral of Motion (Sun-Jupiter System) . ....... .. 45

15. Epoch and Hamiltonian Constants vs. Time in the
Absence of a Second Integral of Motion
(Sun-Jupiter System) ..... ................. . 46

16. Nearly-Periodic Orbits in the Vicinity of Two Exact
Integrals of Motion (Highly Perturbed System) . . . . 47

17. Epoch and Hamiltonian Constants vs. Time in the
Vicinity of Two Exact Integrals of Motion
(Highly Perturbed System) .... .............. . 49

v



18. Nearly-Periodic Orbits in a Transition From Two Exact
Integrals of Motion to One (Highly Perturbed System) . 50

19. Epoch and Hamiltonian Constants vs. Time in a
Transition From Two Exact Integrals to One
(Highly Perturbed System) .... .............. . 51

20. Nearly-Periodic Orbits in the Absence of a Second
Integral of Motion (Highly Perturbed System) ..... .. 52

21. Epoch and Hamiltonian Constants vs. Time in the
Absence of a Second Integral of Motion
(Highly Perturbed System) .... .............. . 53

22. Overlay of Exact and Expanded Nearly-Periodic
Trajectories in the vicinity of Two Integrals of
Motion (Sun-Jupiter System) .... ............. . 55

23. Overlay of Exact and Expanded Nearly-Periodic
Trajectories in a Transition From Two Exact Integrals
of Motion to One (Sun-Jupiter System) . ........ .. 56

24. Overlay of Exact and Expanded Nearly-Periodic
Trajectories in the Absence of a Second Integral of
Motion (Sun-Jupiter System) .... ............. . 57

25. Overlay of Exact and Expanded Nearly-Periodic
Trajectories in the vicinity of Two Integrals of
Motion (Highly Perturbed System) ... ........... . 58

26. Overlay of Exact and Expanded Nearly-Periodic
Trajectories in a Transition From Two Exact Integrals
of Motion to One (Highly Perturbed System) ....... .. 59

27. Overlay of Exact and Expanded Nearly-Periodic
Trajectories in the Absence of a Second Integral of
Motion (Highly Perturbed System) ... ........... . 60

vi



List of Symbols

ai Expanded Hamiltonian Coefficient

8 Infinitesimal Variable

Aj Element of Eigenvector Matrix F

Mass / Distance Parameter

T Orbital Period

SDimensionless Orbital Period

(D State Transition Matrix

kj Element of State Transition Matrix

State Vector

XO State Vector of a Periodic Orbit

8X  State Vector for a Nearly-Periodic Orbit

Portion of Jacobi's Integral

0 Imaginary Part of Non-Zero Poincar6 Exponent

A Linearization of the Dynamics

b Modal State Vector

C Jacobi Constant, Interchangeable with Hamiltonian Constant

com System Center of Gravity

F Eigenvector Matrix

f() Generic Functional Relationship

F2  Generating Function for Canonical Transformation

G Gravitational Constant

g1 () Generic Functional Relationship

g2() Generic Functional Relationship

H Hamiltonian Constant

J Poincar6 Exponent Matrix, Diagonal Block Entries

vii



K New Hamiltonian

L Lagrangian

M Poincar6 Exponent Matrix, Jordan Normal Form

M1  Planetary Masses

mi Dimensionless Planetary Masses

n Number of Masses in a System, Mean Motion of the Primaries

pi Momenta Conjugate to Coordinate Variables qi

p0i Periodic Momenta Conjugate to Coordinates q01

Spi Nearly-Periodic Momenta Conjugate to Coordinates Sq

qi Coordinate Variables for Restricted Three-Body System

q0i Periodic Coordinates

Sqi Nearly-Periodic Coordinates

r Position Vector for Massless Third Body

r, Position Vector for Primary m,

r2  Position Vector for Primary m2

Si Magnitude of Orbital Radii

si  Dimensionless Magnitude of Orbital Radii

T System Kinetic Energy

V System Potential Energy

v Velocity Vector for Third Body

w Angular Velocity Vector For Rotating Frame

x Coordinate Variable in SOS Coordinate Frame

y Coordinate Variable in SOS Coordinate Frame

x0 Initial Condition

yO Initial Condition

Z Correlation Matrix

viii



ABSTRACT

A perturbation theory for restricted three-body orbits,

using a periodic trajectory as a reference solution, is

investigated. The nearly-periodic equations of motion are

derived by analogy to a linearization about an equilibrium point.

In this case, the linearization produces a set of time-periodic

equations of motion that, according to Floquet, are completely

solved by a periodic trajectory.

The four-dimensional phase space of the restricted three-

body problem is first surveyed for regions of periodic motion,

via the surface of section phase plot. Upon extraction of a

periodic orbit, nearly-periodic orbits are integrated. The

integrated state vector is routinely sampled, and then twice

transformed into a new set of variables. The first translates

the frame center to the periodic trajectory. The second, or

modal transformation, projects the coordinates along their

eigenvectors. The transformations are highly useful, since two

of four new variables are constant within a finite region.

surrounding the periodic reference. Plots of the two variables

are offered as an exact representation of a nearly-periodic

trajectory, while plots of the constants over time, trace the

boundaries of the nearly-periodic region.

After the original Hamiltonian is canonically transformed

into the new variables, it is expanded in a Taylor's series.

Several of the terms are either simplified or annihilated

completely. The expansion is then truncated after four terms,
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leaving a readily differentiable expression from which to derive

the nearly-periodic equations of motion. The expanded

trajectories are then compared to the exact ones, over a wide

range of values.

As was expected, a significant region exists where the

expanded equations of motion accurately reproduce the concentric

circular paths shown to exist by the transformed case. As the

initial displacements from the periodic trajectory are increased,

the expanded trajectories fail to accurately model the transients

observed in the exact case. These exact case, orbital

irregularities occur because the displacements from the periodic

orbit are no longer small enough to be represented by a

linearization of the dynamics. The expanded trajectories fail to

recreate this non-linear behavior because most of the Hamiltonian

terms responsible have been truncated. Therefore, before the

complete perturbation solution can be constructed, the expanded,

nearly-periodic equations of motion should be derived again using

more than four terms of the expanded Hamiltonian.
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PERTURBATION THEORY FOR RESTRICTED THREE-BODY ORBITS

I. Introduction

Before the astrodynamics of man-made objects in space can be

fully understood, one must first comprehend basic planetary

motion. Thanks to Sir Isaac Newton and his three laws of motion,

and to Johann Kepler for his three laws of orbital motion, it can

be shown that nearly all astrodynamical systems are dominated by

a single conservative force known as gravity. In fact, the most

general description of the motion of a collection of objects in

space is defined by the n-body problem.

In an n-body system, the nth body is acted upon by the other

n-I gravitational masses present. In this way, the motion of any

mass in a system affects and is affected by every other mass in

the system. The overwhelming task of representing each body is

well illustrated by Wiesel.

Our own solar system consists of one star, nine planets,
over fifty moons, tens of thousands of asteroids, and
millions of comets. The description of the motion of this
system is clearly important, but an exact solution to this
problem has not been found in over three hundred years of
study. (8:33)

Therefore, the use of the exact n-body description of a dynamical

system is not simply a nuisance, it is virtually impossible to

implement.

The simplest and most drastic approximation to the n-body

problem is known appropriately as the two-body problem. Here,
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only two point masses are considered to exist within the

dynamical system. The primary masses are then constrained their

by mutual gravitational attraction. Specifically, both bodies

remain in a circular orbit about the system center of mass point.

This particular arrangement is very special in the field of

astrodynamics since, "it is the only gravitational problem for

which a closed-form solution has been found" (8:45).

Additionally, one might suspect the accuracy of such a severely

truncated formulation. Surprisingly enough, "most systems

encountered in orbital mechanics are nearly perfect two-body

problems, with only small perturbations from two-body motion"

(9:75).

There are situations, unfortunately, where the small

perturbation assumption of two-body perturbation theory is

violated. Such a case occurs in the vicinity of the Martian moon

Phobos. The orbit about Phobos is so dramatically effected by

the gravitational pull from Mars, that a simple two-body

approximation can't simulate the true dynamics of the region.

According to Szebehely,

Entry into celestial mechanics and space dynamics can be
gained by the study of the problem of two bodies. To
penetrate the fundamental problems, the number of
participating bodies must be increased from two to three.
(5:v)

Clearly, in highly perturbed dynamical systems, higher orders of

approximation must replace the tractable two-body scenario.
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II. Historical Development

This study is the first of it's kind. An extensive

literature search of four data bases, the AFIT library, and a

tedious bout with the Science Citation Index, produced nothing.

The only sources of information available on the development of a

restricted three-body perturbation theory using a periodic orbit

as the reference solution, were Dr. Wiesel's paper on the subject

and Dr. Wiesel himself. As described in his previous work, Dr.

Wiesel contends that,

It is common for researchers working with periodic orbits,
to also solve the associated Floquet problem in order to
derive stability information on the orbit. It is far less
common to make use of eigenvectors of the linearized system,
or to use a periodic orbit as a reference solution for
perturbation theory. (7:231)

While it appears that this study is similar to others in it's

content, it is quite original in it's purpose. It is unique to

use the eigenvectors and Poincar6 exponents of the periodic

trajectory, to canonically transform the generic equations of

motion into nearly-periodic ones. By analogy to classical two-

body perturbation theory the periodic trajectory serves as the

reference solution, while displacements from this reference are

treated as small perturbations.
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III. Theory

The Restricted Three-Body Problem

The complete three-body formulation at first glance, might

not appear to be much more difficult to solve than the two-body

problem. While the inclusion of another gravitational mass into

a two-body system would further complicate the dynamics, one

would still hope to find at least a partial solution. In

reality, however, the problem of three-bodies is completely

unsolvable without imposing the restrictions first defined by

Leonard Euler in 1772.

In the restricted three-body problem, it is assumed that two

of the bodies are tremendously more massive than the third. The

motion of the third body is then governed by the gravitational

pull of the two primary bodies. Conversely, the motion of the

primaries is unaffected by the third body, and is completely

described by the two-body solution. In this way, the restricted

problem can be considered a one-body problem, because only the

equations of motion of the third body are of interest.

Before deriving the equations of motion, non-dimensional

variable definitions for mass, length, and time must be

introduced. First, the non-dimensional masses ml, M 2, and M 3 are

defined by

Mi 2 3 (

I 1 M,+M 2 - m3 = 0-(1)

where M, and M2 are the masses of the primary bodies, and M3 is
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the mass of the third body (see figure 1). Second, the non-

dimensional radii, s1, s 2, connecting the primary masses to the

center of mass are given by

S S, $2 2 (2)S 41-S2

where S1 and S2 are the actual radius magnitudes. The center of

mass position s, as measured from ml, is then calculated by

=,ms- mzxO+mx (s1 +s2)(3s, = -m i Si m1XO M2 (lS)-m2 (3)

Remembering that

S1+S 2 = m1+ = 1 (4)

then these parameters may be redefined by a single parameter g.

s1 =m 2 = IL s 2 =m 1 = l- (5)

Third, the non-dimensional orbit period T is defined as

[GM1 ~)I r(S 1+S2)3  i ( 1 ff)1 6TGMlM 2= 2 7r2G(l+2 = 2 1 6)
(s__+s2)3 G (M *M2) j (S 2)3

where G is the universal gravitation constant. As a consequence

of eq(6), the non-dimensional angular velocity of the rotating

coordinate frame, w, may be derived from the mean motion of the

orbiting primaries.

G (M+M 2) ($I+$2) 3 G (S1 +M2)
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q2

wm or

r2 rr

a m = 1 co rn M , m = -1

s 2  = -P s I  I q,

Figure 1. Reference Frame for the Restricted Three-Body System
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The Restricted Three-Body Equations of Motion

In his treatise on the problem of three bodies, Victor

Szebehely devotes the entire first chapter to the description and

derivation of the equations of motion for the restricted three-

body problem (5:7-22). The equations of motion to be presented

differ from those of Szebehely, since his final result is a set

of two second-order differential equations (3:22). Here, four

first-order differential equations are derived, which are

dynamically equivalent to those of Szebehely.

The position vector for the third-body, and the angular

velocity vector for the rotating coordinate frame can be directly

observed from figure 1.

q + (8)

W (9)

where

form a set of orthogonal unit vectors. The velocity vector is

d (41- q2) 4 + (11)+qj 4djt

and the dimensionless kinetic energy of the third-body is then

T = !m[_V-V] = -!m,[(4j-1-q+((4+q1 ] (12)

The non-dimensional potential energy of m3 is purely

gravitational, and is given by

7



_] [ -G A , -GM2M3 1  -M73 (1-) il (13))G _ + _ -- -(M( 192)+ rl Z') (13)
__2 -GM11f r2

where

. [(q -_ )2+(q)2 ] (14)
X. [(q + -) (2)2]

the dimensionless Lagrangian is then

L = = )2 + (-)+ A (15)
M 3  2 r r 2

The conjugate momentum terms, P, and P2, needed to complete

the state vector

IPi (t) (16)

=q 2(t) i (16)

are constructed by differentiating the Lagrangian.

_ iL aL

P1 =5L 41-q2 p - a -ej2+q, (17)ae2
A rearrangement and substitution of the momenta into the

Lagrangian then yields

L = .(p1 +p22 ) + + Z (18)I1

Thus, the system Hamiltonian is

H Ep-L I(p2+p22) p-q2 - (19)

8



The equations of motion for the :estricted third-body may then be

obtained via Hamilton's equations.

aH

aH (1-j) (q - (q+-I.)c = -q, P2 Z, -: r2 3
(20)

d 2 =aH P2 -p~q z
aHq

-62 (I-2 X, 3 li

Periodic Orbits and the Equations of Variation

Periodic orbits are a very special sub-set of restricted

three-body orbits. In general, a periodic orbit is nothing more

than an orbit that closes upon itself after each revolution, and

nothing less than one of the few known solutions to restricted

three-body dynamics. Sincc it is the point of this study to gain

insight into nearly periodic orbits, an understanding of the

periodic case must first be obtained.

A periodic orbit will always return to it's original state

after each integer multiple of it's period. Because of this, a

periodic orbit may be calculated by iteratively narrowing the

difference between the initial and final state conditions.

In general, periodicity is obtained when

(0)) (21)
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In practice, once a set of initial conditions have been

chosen and the orbit integrated, one will find that the initial

and final conditions will not agree. Therefore, 'before the next

iteration, the initial conditions must be adjusted based on the

error found in the final conditions of the last integration.

This can only be accomplished if dynamical information about

nearby trajectories is made available. This information i-

contained wihin the equations of variation.

In vector form, the equations of motion may be ;-.written as

a -- (j) (22)

Similarly, if we define the state of a nearby trajectory as the

vector sum of the current trajectory and the displacement vector

separating the two trajectories, then

Xnearby = 8 (23)

Substituting this result into rhe equations of motion, we get

d dX + -(Wd = T(i+8y) (24)

After expars.ion in a Taylor's series, centered about the original

trajectory, the equations of motion become

d - d
- - d- (61) = + Of 1lI (25)

If we assume a first-order expansion and then subtract the

original equations of motion, we obtain the equations of

variation.

10



.~ (8~)(26)

In vector form, Hamilton's equations may be written as

?(Z) = ZH (27)

0Ix

where

'0 1 0 01
-1 0 0 (28)
0 0 1

0 0 -1 0

Differentiating Hamilton's equations with respect to the state

vector yields

Z A (t) (29)

where A(t) is known as the linearization of the dynamics. Thus,

the equations of variation become

A(t) (30)

expanding A (t),

.0 1 1 0'

A(t) -H 1 0 -H1 3  (31)
-1 0 0 1

-H31 -1 33 0

where

11



= -3(q -1)2(l-p) 3(q1 +1-)2 '1 + IP +
H .5 =r 2

5  r1
3  r'2

3

H -3 (ql-t) q2 (1-p) 3 (ql+l-tt) q2
r 5  r25  (32)

H31 = H13

-3q2
2 (l-p) 3q2

2 tP +I- +

H33  r2  r r2
3

Since the equations of motion form a set of first-order,

time-varying, linear, differential equations, the general

solution may be constructed from the fundamental set of solutions

(6:61).

81(t) = 0(t) 81(O) (33)

where (D is the solution to the differential equation

-d 0 (t) = A (t) ,0,(t) (34)dt

which in turn must be integrated along with the equations of

motion.

Upon completion of an integration, the solution to the

equations of variation may be constructed as

q(1 C1 iZ 4013 C4' rq (o)'
8p,. (r)/= C1 C2 C, 3 24 , ) p1 ((o)
8q2(T) J 1 032 *033 4 8 (o)(
8P2 (r) C1 (N2 4 4 8P2 (0)

If in the selection of the initial conditions, we restrict 8p,(O)

and 8q 2(O) to zero, then the orbit must not only close upon

itself, but must do so intersecting the q, axis perpendicularly.

12



The benefits of this restriction are three fold. First, the

number of initial conditions that must be correctly determined is

halved. Second, the final values of 8p, and 8% are the actual

error in the boundary conditions. Third, only the portion of

eq(35) that relates Bp1 (T) and 8q2 (T) to 8q(0) and 8P2(0) is

relevant. Therefore, eq(35) may be simplified to

I , [1 d 4][8 q, (0)] (36)

8% 031 4 . 8PJ ()L

and after matrix inversion to

[8o 1, (0 [21 40241 P (37)

8P2 () 1 034! q2(~

which yields the necessary relationship between initial and final

conditions to find a periodic orbit.

Initial Condition Determination

Since the equations of variation are a linearized

approximation of the true system dynamics, their use in an

iteration scheme is limited. More to the point, the iteratior

scheme will only converge if the initial conditions chosen

produce a nearly-periodic orbit. Thus, a solution may be

extracted only if it has already been approximated.

The restricted three-body problem is spanned by four

dimensions, and is solvable only by four exact integrals of

motion. It was proven by Henri Poincar6, however, that

The Hamiltonian is the only analytic integral of the
motion. If other so called 'quasi integrals' exist,

13



they are not analytic functions of the system

coordinates, momenta, and time. (9:132)

Therefore, the periodic solution we seek must involve the

Hamiltonian, and three of these 'quasi integrals'.

Given the absence of an analytical approach, it appears that

periodic regions may only be identified through numerical search.

Fortunately, such methods have been well developed and widely

used, given the availability of fast and powerful computers.

William Jefferys compiled an extensive catalog of restricted

three-body phase plots, known as surface of section plots (3:1).

These plots allow the user to graphically locate regions of

periodicity, and to identify sufficiently periodic sets of

initial conditions.

The Surface of Section

The equations cf motion as derived by Jefferys differ from

Szebehely's formulation in two ways. First, the coordinate frame

is not centered at the system center of mass point, but has been

translated a distance g to the center of the primary body of mass

1-g. (see figure 2) Second, the Jacobi constant C, is used

instead of the system Hamiltonian, H. Therefore, in order to

obtain Jefferys' results using the dynamics already presented,

two transformation relationships must be established.

The relationship between coordinates is simply

q,= x+I (38)
q2 = y

while the relationship between constants of motion is a bit more

14



M3

11

Figure 2. Reference Frame Used in the Surface of Section
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involved. Jefferys uses the Jacobi integral in the form

*C2 + 3 2 = 2 -C (39)

where

r = [X2+y2] r2= [(x+1) 2 +y 2 ]2

from Szebehely's equations of motion

41 = PI+q2 2 P=p2 -q1  (41)

so after substitution, Jacobi's integral becomes

2)2+ (p2-qj) 2 = 2  +-I-+ (+- )r 1
2 +r (C

r1  r2  2 2

grouping the terms found in the Hamiltonian to the left

-p2 +p2) + p1q2 - P 2q - - - - i-
r 2  r. (43)

=-[-€q +q1 + ('-..)r. + - c]

then by substituting the radius terms

2Hf = - (q,2 +q22) + (1-V&) [ (q
1
-4L) 2 +q22] +' IL pE [,I 2 +q22] -C (44)

which simplifies nicely to

2H= (1-p) - C (45)

Thus, the transformation between the derivations of Szebehely and

Jefferys is complete.

16



The surface of section does not plot orbit trajectories per

se. Rather, it illustrates the behavior of all possible

trajectories in a particular finite portion of the phase space.

Because the Hamiltonian is a constant of the motion, the
third body m3 is constrained to move on a three dimensional
manifold embedded in the four dimensional phase space. If
another independent integral exists for this orbit, then the
third body would then be constrained to move on a two-
dimensional manifold embedded in the three-dimensional phase
space. (3:6)

The reduction of dimension from four to three, occurs because

specification of the Hamiltonian constant H and any three state

variables, dictates the value of the fourth. In this way, the

state vector may be transformed to include three state variables

and one constant.

W(t) = P P (46)q2 q2
P2  f(q,P 1, q2 , H, P)

The dimension of the problem is further simplified by arbitrarily

specifying a plane, through which all of the two-dimensional

trajectories of interest must pass. The plane chosen by Jefferys

was

Xk + y3 = qlp, + q2P2 - g(p 1 +q2) = 0 (47)

since, "it represents the condition for a.- orbit to have a

pericenter or apocenter (i.e., the point nearest to or farthest

from the primary 1-g)" (3:8). Again, by algebraic manipulation,

the state vector may now be written as

17



1(t) (q11q2,H,,,) (48)

Therefore, by specifying a value for the Hamiltonian, the

arbitrary plane, and the parameter g, the dimension of the

problem is reduced from four to two. In order to find periodic

regions in the remaining two-space, Jefferys contends

If a second integral exists, the intersection of the two-
dimensional manifold on which the particle is constrained to
move with the arbitrary plane will be one-dimensional, in
general (i.e., a set of closed curves). On the other hand,
if no such integral exists, then the intersection will not
be restricted to one-dimensional sets in the arbitrary
plane. (3:6)

Thus, we now have a way to identify periodic regions in the phase

space, regions where two integrals of motion exist.

Figure 3 represents a precessing elliptical trajectory about

primary 1-g. By comparison, figure 4, shows which points from

this trajectory actually intersect the plane of interest. In

this case, the points of apogee and perigee constitute the only

points on the rotating ellipse that pass through the plane.

Therefore, the surface of section appears as two circles that

trace the path of the apogee and perigee points, as the

elliptical orbit precesses.

In general, on most surface of section plots, the location

of the primaries and mass m3 are omitted. Therefore, one should

remembs that the plot is always centered about the primary mass

1-g, with the other primary mass, g, located at the point (-1,0).

The actual location of mass m3 is of little use and is never

18



Figure 3. An Elliptical Trajectory Precessing About Primary 1-p
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recorded. All that is really important here are the size, shape,

and location of closed curves on the arbitrary plane.

Since it is the purpose of these plots to describe the

dynamics of a region, several trajectories must be integrated and

overlaid to produce a meaningful surface of section plot. Figure

5 is a surface of section plot for the sun-Jupiter system. The

value of g is small, which allows m3 to orbit the primary i-,U in

gently perturbed two-body fashion. Figure 6, on the other hand,

is a good example of the highly perturbed, non-two-body case.

Here, both primaries are of a size and proximity, that they

grapple continuously for dynamical control of M-. On either

plot, the concentric enclosed island structures indicate regions

of periodic motion. These regions are all centered by a single

point that is a periodic solution.

The Nearly-Periodic Trajectory in Modal Variables

To summarize, the existence of Jacobi's integral reduces the

dimension of the phase space from four to three. This is true

anywhere in the restricted three-body phase space. Locally,

however, a closed curve on the surface of section plot implies

the presence of a second integral. A second integral further

confines the dynamics to a two-dimensional manifold, embedded

within the four-dimensional phase space. The true dynamical

nature of these local two-dimensional manifolds is distorted on

the surface of section plot, because it is a projection of the

two-dimensional manifold onto the arbitrarily defined plane.
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Figures 7 and 8 illustrate these periodic regions, and their

distorted appearance on a surface of section plot.

To construct an exact representation of a nearly-periodic

trajectory without distortion, a vector space that is locally

tangent to the Hamiltonian surface must be constructed. To this

end, Wiesel introduces two variable transformations (7:233). The

first, translates the frame of reference so that it is centered

on the periodic trajectory. The second, termed the modal

transformation, orients the frame with the local tangent space.

The resulting transformation maps a second state variable into a

second constant. This new constant refers to the orbit epoch

time, and may be treated like the Hamiltonian constant (7:236).

These variables transformations will be used in two

different ways. First, an orbit will be integrated in the

original cartesian coordinates, and then transformed into the

modal variables. A plot of this result will be used as an exact

representation of a nearly-periodic orbit. A wide range of

displacements will be tested in order to obtain a rough idea of

the limits of the two-integral region.

Second, the original Hamiltonian will be canonically

transformed into the modal coordinates and expanded in a Taylor's

series. Since the magnitudes of the modal variables are

typically much smaller than one dimensionless length, the higher

order terms in the expansion rapidly approach zero. For this

reason, the Hamiltonian expansion will be truncated after four

terms. An approximation for the equations of motion for nearly-
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periodic orbits will result. The validity of the expanded

equations can then be tested vs. the exact representation.

The first transformation begins by allowing

/8 / ' -Pio/ (49)

.8P2.] P2 -P20.

to constitute a canonical transformation to a set of nearly

periodic variables, centered about a periodic trajectory. Here,

the zero subscript refers to the periodic reference trajectory,

and the delta prefix signifies the new, nearly-periodic

variables. A generating function F2 exists

F2 = (8p+plo) (ql-qlo) + (8p2+p20) (q2-q 2o) (50)

such that it's partial derivatives of the form

aF, 8 aF, (51)
P 8q a(p)

yield

pi = 8pi+Pio 8qi = q-qi0  (52)

which reproduce the original substitution definition, and prove

the transformation canonical.

In practice, this first transformation is more difficult

than it appears. In order to subtract the current nearly-

periodic trajectory from the periodic one, both trajectories must

exist in an approximately continuous manner, given the tiny time

steps used in the numerical integration. The method employed

27



here, was to preserve the periodic trajectory in a finite series

of Fourier coefficients. In this way, barely a hundred samples

of the actual trajectory were transformed into two sets of fifty

coefficients. The advantage of the Fourier representation is

that the coefficients may be reassembled into the periodic orbit

at any time necessary. This is why the Fourier representation is

considered continuous. Details of this digital to analog

conversion process are contained in the Fourier subroutine in

appendix B, and also in the book by Brouwer and Clemence (1:109).

If the variables describing the motion of the third body

relative to the periodic orbit are indeed small, then Wiesel

argues that the equations of motion for a nearly-periodic

trajectory are analogous to the equations of variation previously

described. In other words, the periodic and nearly-periodic

trajectories are close enough that there is a linear relationship

between the two orbits. Thus

d [8y (t) ]=A (t) 8i (t) (53)

is a set of linear, time periodic differential equations, and

have the solution

8y (t) = 0 (t) a! (0) (54)

According to Floquet, since A(t) is time periodic, then the above

relation may be decomposed to

8i(t) = F(t) e'u 8i(0) (55)

where M is a constant matrix, and F(t) is periodic with the same

28



period T as the original orbit. Wiesel then defines the second

transformation by

81(t) = F(t) 5(t) (56)

where b(t) is the product of e" and an initial constant.

Because eMt are the time-varying analogs of the system

eigenvalues, and F(t) is constructed with the system

eigenvectors, this transformation is known as the modal

transformation (2:671). The new state vector b(t) is then

obtained by simple matrix inversion.

15(t) = F(t) -1 81 (t) (57)

The orientation of the unit vectors in the modal system is

shown in figure 9. The matrix differential equation describing

the periodic changes in the eigenvector matrix is

dE(t) =A(t)F(t) - F(t)J(t) (58)

dt

where A(t) is the same as in eq(31), and J is a matrix of the two

system Poincar6 exponents.

Re, Im1  0 0'

' IraI Re, 0 0 (59)

0 0 Re 2 Ima2

0 0 -Ira2 Re2

More information on the subtleties of Floquet theory is provided

by Calico (2:672). The details proving the second transformation

canonical are outlined by Wiesel (7:234), where the reader is
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referred to the text by Pars (4:453-483), for a full explanation

and proof.

The Restricted Three-BodV Perturbation Solution

After canonical transformation to the modal coordinates, the

new Hamiltonian minus a pure function of time is

K(1) = H(1) (60)

since

aF2
at

doesn't contribute to the equations of motion.

Expanding the new Hamiltonian in a Taylor's series produces

4 BH ) 4 4 +H ) (62)K(15) = H1(0) + _____(5) + (2) (62)

where b=O centers the expansion about the periodic trajectory.

Alternatively, this expansion may be more compactly written using

tensor notation.

1~ ...!(63)
K(1) = H(0) + HI(0)B + 15. H(0) 1 1 + THJk(O) ik + (63)

The first term in the expansion is the Hamiltonian for a

periodic orbit, and is a constant. The second, or linear term is

identically zero, because it describes the motion of the periodic

trajectory with respect to itself. The third, or quadratic term

is the Floquet problem, and becomes a constant coefficient,

linear system in the new variables. Since the magnitude of the
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modal state vector is very small compared to one, the expansion

is truncated after the fourth term.

The first two elements of the modal state vector, b, and b 2,

are the only two variables in the modal space. Elements b3 and

b4, are both constants, and represent a change in the orbit epoch

(b3), and a change in the Hamiltonian surface (b4 ). Since we are

free to arbitrarily choose both of these values, they are both

set to zero. The dimension of the new Hamiltonian is then

reduced from four to two.

K(15) = H(O) + I~ BT[ ]a B T + 'I Hijk(O) 151 ]5.1 15k (64)

where o) is the imaginary portion of the non-zero Poincar6

exponent, and the modal state vector is

Expanding the third-order tensor, the new Hamiltonian becomes

2 1 'l ad (66)
K(1) = H(O) + -1 (b +b2) c4 + - bb 2 2 + bb - b 4 (66)

2

where
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_ 1

al(t) =-!6HIJkAIAljAlk

a 2 (t) = 6 [HIJkA2A1jA1k + HIjkA1IA 2jAk + HIJkAljAIjA 2 k]

a 3 (t) = 6[HiJkAA 2JANk + H~jkA 2 IAljA 2k + HijkA2 IAajAlk]

a, (t) = 6 HIJkA2 iA2jA2 k

which are periodic functions of time alone. Hijk and Aj are

functions of the periodic trajectory and are independent of the

modal variables. Aj represents a particular eigenvector element

from the eigenvector matrix. Here, the index order is reversed

such that i represents a particular eigenvector, and J indicates

which element from that eigenvector is needed. Using Hamilton's

equations, the equations of motion for nearly periodic orbits are

dt bl. = ba 2 + 2b.b2 3 - 3b2 I

(68)
d b 2 - -abl - ba 3 + 2bb 2 2 - 3b,2 1
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IV. Hardware - Software

This study is a collection of several programs, coded in

standard Fortran 77, and executed on an ELXSI 6420 Super-Mini

computer. All of the software is contained within appendix B,

and is made up of six different programs and their associated

subroutines. The final computer outputs are a collection of data

files composed of ordinate and abscissa values. The figures

presented below were created by simply plotting the unformatted

data values, (x,y).
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V. Numerical Technique

Searchinq the Phase Space

Before a periodic trajectory can be extracted, periodic

regions in the phase space must first be identified using program

SECTION. Isolating a periodic region and a useful set of initial

conditions requires a cercain amount of trial and error without

prior knowledge of the phase space.

Initial Conditions

Once a periodic region has been located on a surface of

section plot, a set of initial conditions, (xO,yO), a value for

the Hamiltonian constant, and a value for the parameter g can be

determined. The orbital period must also be estimated by

observing the number of integration steps needed for the orbit to

return to it's original state, and multiplying this value by the

time step (time/step).

Extractinq a Periodic Trajectory

Using the initial conditions found above, a periodic

trajectory is extracted from the periodic region by the program

PERIOD. The initial value of the orbital period must be adjusted

in order to find the period that corresponds to the Hamiltonian

surface of interest. There is an inverse relationship between

the orbit period and the Hamiltonian surface constant. Upon

convergence, the program will calculate the eigenvectors,

eigenvalues, and Poincar6 exponents of the linearized system.
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Storing the Periodic Trajectory

In order to preserve the periodic trajectory in nearly

continuous form, the state vector and eigenvector matrix

previously calculated must be fed into program FLOQUET/FOURIER.

This program numerically integrates the periodic trajectory, and

the state transition matrix. Routine samples of the state vector

and the eigenvectors of the state transition matrix are taken and

placed in temporary storage. Upon completion of the integration,

the stored values are fed into a Fourier conversion subroutine.

One hundred of the possible thousand integration values are

converted into two sets of fifty Fourier coefficients.

StorinQ the Periodic Hamiltonian Coefficients

The program FLOQUET/HAMILTONIAN requires the same input as

program FLOQUET/FOURIER. Here, the periodic trajectory is

integrated and sampled as before. The periodic Hamiltonian

coefficients are then calculated by a complex series of vector

multiplications. As before, the values are temporarily stored

until the integration is complete. Another call to the Fourier

subroutine produces the desired set of coefficients.

The Exact Nearly-Periodic Trajectory

The exact nearly-periodic trajectories are created by the

program EXACT. The orbit is integrated in the original

variables, before the state vector is routinely extracted and

transformed into the modal variables. Three separate data files

result. One each for the two constants created by the modal
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transformation vs. time, and one for the remaining two variables

plotted together. The only inputs required include the Fourier

coefficients of the periodic orbit, and a value for the initial

displacement off the periodic center. The output is an

unformatted data file, whose (x,y) entries may be plotted

directly.

The Expanded Nearly-Periodic Trajectory

Here, the new set of equations derived from the expanded

Hamiltonian are integrated. The inputs required include the

Fourier coefficients that represent the periodic Hamiltonian

coefficients, and the same initial displacement used in program

EXACT converted to modal coordinates. Program EXACT provides

these values. The output is a data file containing both elements

of the state vector, sampled during the integration.

Numerical Analysis

There are two distinct observations to made in this

analysis. First, several exact trajectories will integrated and

grouped according to their initial displacements from the

periodic trajectory. A rough idea of the behavior of nearly-

periodic orbits vs initial displacement can be obtained. Also,

the validity of the two integral assumption will be monitored by

plotting both constants of motion vs time.

The second set of observations will be made by overlaying

several expanded orbits on top of the exact ones. This step is

critical in determining the proper truncation limit for the
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expanded Hamiltonian. Both sets of observations will be

accomplished twice. Once for the Sun-Jupiter system, and once

for the highly perturbed system.
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VI. Results and Discussion

Nearly-Periodic Orbits in Modal Variables

Figure 5 is the surface of section plot for the Sun-Jupiter

system. Here, g is very small, and as one might expect, this

system could well be described using classical two-body

perturbation theory, were it not in the vicinity of a resonance.

Proximity to a resonance, means that the same relative
configurations repeat in the same order. This gives an
otherwise small gravitational force a chance to produce a
relatively large effect. (9:98)

By comparison, figure 6 represents a highly perturbed dynamical

system.. These are only two of an infinite number of choices, but

were chosen because of the plainly visible closed curves present

on both. Figures 7 and 8, magnify these regions where two

integrals of motion are present.

To this point, all of the figures presented have been in the

coordinate frame presented in figure 2. From this point on, all

of the figures will be referenced to the modal unit vectors

described in figure 9, and/or a time axis measured in orbital

radians.

The exploration of nearly-periodic three-body trajectories,

begins with figure 10. Here, orbits very close to the Sun in the

Jupiter-Sun system are plotted. As was expected, a set of

concentric circles is present. The initial displacement off the

periodic trajectory for each orbit is recorded as a fraction of

g. This plot depicts the limiting region where two integrals are

said to exist. Any distortion of the trajectories indicates the
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gradual dissolution of the second constant. Figure 11 shows the

behavior of the two integrals for the outer trajectory of figure

10, plotted on the same scale. The small periodic displacements

on figure 11 correspond to the distortions on figure 10. Since

straight lines and perfectly round circles are all that exist for

the trajectories inward from this point, they were considered

uninteresting and left alone.

The marginal case, where the second integral of motion can

no longer be assumed constant, is pictured in figure 12. Here,

the initial displacements off the periodic trajectory

are increased by an order of magnitude. The circular orbits

appear to decompose into five separate trajectories.

Surprisingly, however, each orbit contin,-es to close upon itself.

Figure 13 shows the marginally constant nature of the second

integral.

The extreme case, where Jacobi's integral is the only

constant in the system, is plotted in figure 14. Unbelievably,

these orbits about the sun continue to close. This is very

interesting since the apogee of the orbit extends all the way out

to, and even past Jupiter! Figure 15 plots the third state

variable, formerly the second integral, and Jacobi's constant.

The next series of plots, figures 16-21, represent similar

cases to the ones presented, only now for the system where g is

equal to a third. Once again, the first plot in the series,

figure 16, illustrates the nicely concentric nature of the
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nearly-periodic orbit in the presence of both integrals.

Figure 17 confirms that there are indeed two constants of motion

present.

In figure 18, the phenomenon of chaotic motion is first

seen. As we step further away from periodicity, the orbits

develop increasing numbers of odd twists and turns. The outer

three orbits fail to close at all. Figure 19 is very

interesting, since for the first time, both integrals of motion

appear to be moving. Since Jacobi's constant has been proven to

exist everywhere in the phase space, then figure 19 indicates

that the tangent space is no longer aligned with the Hamiltonian

surface.

Figure 20 is an excellent example of a formerly well behaved

dynamical system marching off to chaos. The inner two

trajectories are still recognizable as orbits that nearly close.

The outer two trajectories no longer describe an orbit. The

onset of chaotic motion is well presented in figure 21. For

approximately half an orbit, the second integral remains quasi

constant, and the coordinate frame anchored on the Hamiltonian

surface. As time progresses, the epoch constant becomes the

epoch variable, and the relationship between coordinate reference

and the Hamiltonian surface is destroyed. Total chaos ensues.
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The Expanded Approximation Vs. The Exact Case

To best illustrate the accuracy of the approximated

equations of motion, they have been overlaid with a plot of the

exact case. Figure 22 compares two of the trajectories from

figure 10, with the same two trajectories from the expanded case.

The inner orbits overlay in round concentric fashion as expected.

The outer overlay represents the limit of the highly correlated

region. In figure 23, the trajectories are very marginally

agreeable, while in figure 24, the trajectories only meet at

nodal points.

For p equal to a third, similar behaviors may be observed.

Figure 25 represents the highly correlated region. Figure 26,

however, shows a large difference between the expanded and exact

cases. This case is still marginal, since both represent nearly

closed orbits of the same size. In figures 27, the expanded

trajectories don't show any indication of the chaotic motion

present in the exact case.
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VII. Conclusions and Recommendations

The Modal Transformation and the Limits of the Tangent Space

The transformation into modal variables does indeed map the

state vector into a set of two variables and two constants in a

small region surrounding the periodic orbit. In the Sun-Jupiter

system, the radius of displacement separating the regions where

the epoch was or wasn't constant, appears to be about 10% of g or

approximately 1.OE-4. The Hamiltonian constant remained so, for

every displacement attempted. This is interpreted to mean that

the Hamiltonian surface is relatively flat over a large area,

which permits an extended region of alignment between the

Hamiltonian surface and the tangent space. Given the emergence

of epoch time as a variable, this technique could be applied to

two-body systems near a resonance.

In the highly perturbed case, the apparent two-integral

region occurred within 1% of g. While this is a much smaller

percentage of g than in the previous case, the actual size of the

region is 3.OE-3. In terms of a ratio, this region is 35 times

as large as the region in the Sun-Jupiter system. Although this

result was not expected, it makes sense in terms of the location

of the center of mass of the three-body system. In the Sun-

Jupiter system, the mass center is nearly on the sun, where as

the mass center for the highly perturbed case is a third of the

distance separating the primaries away from the primary 1-g.

As before, a transition of the epoch constant to the epoch

variable was observed with larger displacements from the periodic
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trajectory. In this case, however, the Hamiltonian constant

began to move as well. Both observations coincided with the

transition to chaos. It appears that the Hamiltonian surface and

the tangent space skew much more abruptly than before. Unlike

the Sun-Jupiter system, the useable portion of the phase space is

strictly limited to the region where both integrals exist.

The Expanded Vs. the Exact Equations of Motion

The exact and expanded versions of the nearly-periodic

trajectories correlate completely in the presence of both

constants of motion. For the Sun-Jupiter case, within 10% of p,

and for the highly perturbed case, within 1% of g. These limits

were determined by simple observation of the figures presented,

and are not intended to be exact. In these cases, however, the

extra terms in the expanded Hamiltonian equations of motion

eq(68), other than the first, are unnecessary. These extra terms

are either zero, or very small, and fail to accurately model the

transition of the epoch variable. Therefore, if the desired

trajectories are strictly limited to the two-integral regions,

then the equations of motion could be further reduced to

-1 = ab 2  (69)

which are the equations of a harmonic oscillator. Since this

system can be solved in closed-form, no integration would be

necessary. The programs EXPANDED and FLOQUET/HAMILTONIAN could

be eliminated completely.
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Conversely, if the nearly-periodic trajectories outside of

the two-integral region are to be explored, then more terms must

be maintained in the Taylor's expansion of the new Hamiltonian.

Eventually, by comparison of the new expanded trajectories

against the exact ones, the proper truncation limit may be

determined. Once this has been accomplished the perturbation

solution may then be constructed.

Either way, a solution for nearly-periodic orbits can be

derived in closed-form. The entire system would be modelled as a

harmonic oscillator with a forcing term, and no further

integration would be necessary. The final task would then be to

derive a functional relationship between the system parameters

and integrals of motion, and the maximum allowable initial

displacement from the periodic orbit.

(b (0) ,b2 (0))max = f(b 3,b 4,f)
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Appendix A: Code Validation and Error Determination

To ensure that the computer programs used in this study were

correct, a large amount of testing and cross checking was

required during code development. Wherever possible, hand checks

were performed. Unfortunately, given the numerical complexity of

most of these programs, few were actually validated that way.

The Surface of Section

It was very easy to determine the accuracy of this program.

Assuming that the catalog of SOS plots published by Jefferys was

correct, the program was complete when the pictures matched.

This step validated the equations of motion for the restricted

three-body problem, as well as the surfacing technique.

Periodic Orbit Determination Program

The simple beauty of a periodic orbit is that it returns to

it's original conditions after each orbit. The state transition

matrix was checked by taking numerical derivatives, and it's

eigenvectors using a linear algebra software package. The last,

best test was a hand check of the converged state values

substituted into the equations of motion.

Floguet/Fourier and Floquet/Hamiltonian

Both of these programs integrated the equations of motion

already validated, using the periodic initial conditions, also

already checked. Even though the individual outputs were

different, the methods used were the same. Periodic state or
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Hamiltonian information was extracted at fixed intervals during

the integration. The only check available here was to scrutinize

the general periodic trends in the data. Upon completion of the

integration, the discrete periodic information was converted into

Fourier coefficients. These in turn were checked by simply

reconstructing the known trajectory from the coefficients.

The Program Exact

Here, the only process yet to be checked was the matrix

inversion from the intermediate set of coordinates to the modal

ones. This was accomplished via the linear algebra package. The

two constants were checked for any periodic modulation that may

have been caused by insufficient sampling of the periodic

trajectory. In these cases the number of Fourier samples was

simply increased.

The Program Expanded

The only test left to perform, was to measure the size and

shape of the output compared to the exact case, using identical

inputs.
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Appendix B: Thesis Software

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C
c PROGRAM SECTION
C
c PURPOSE: Creates a surface of section plot file
C
c SUBROUTINES: HAMING.F
c RHS1.F
C H.F
c
ccCcccccccccccCcccccccCcccccccccccccccccccccccccccccccccccccccccc

program sect
c
c problem commons
c

common /data/ xmu,xmua
common /lam/ xlambda(4)
common /ham/ t,x(20,4),f(20,4),err(20),nn,hh,mode

c
c variable declarations
c

implicit double precision (a-h)
implicit integer (i-n)
implicit double precision (o-z)
character*lO filnaml, filnam2

dimension xlambda(4),x(20,4),f(20,4),err(20),rdotv(4)
c
c input data
c

read(*,*) xmu,xmua
read (*,*) hh,tmax
npts = dint (tmax/hh)
read(*,*) xnot,ynot
read(*:*) xjac' s n
read(* ,*) fi lnaml
read(*,*) filnam2

c
c open output files
c -f finaml is the plotfile
c -- filnam2 is a general output file
c

open (2, file-filnami, status-'unknown')
open (3, file=filnam2, status='unknown')

write (3, *) 'mu=' ,xmu,' l-mu=' ,xmua
write (3, *3 'xO=' ,xnot, 'yO' ,ynot
write (3 * ) 'jacobi const=' ,xjac, 'timestep=' ,hh
write (3, *)
write(3,*) 'npts value at n*period*

mode = 0
nn -4
nxt =0

t = O.dO
c
c get ql,pl,q2,p2 for given xO,yO, and jacobian
c

ql -xnot + xmu
q2 =ynot

xham = (xmu*xmua-xjac)/2.d0
rl -((ql-xmu)**2.dO + q2**2.dO)**.5d0
r2 -((ql+xmua)**2.dO + q2**2.'dO)** *5d0
d xham + xmua/rl + xmu/r2
g =q2/(ql-xmu)
a =g*g + l.dO
b -2 ~dO*(g*g*xmu + g~2 + 1l)
c =(g~xmu)**2 .dO) + 2.dOg*q2*xmu - 2. dO*d
p2 =(;b+syn* (b*b-4.dO*a*c) **.5d0)/ (2.dO*a)
p1 g (xmu-p2)

c
c initial conditions
c

x(l,l) =ql

x(2,1) =p1

x(3,1) =q2

x(4,1) =p2

c
c initialize haming
c
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call haming(nxt)
C
c turn-off second EOM eval
C

nxt - -nxt
if(nxt .me. 0) go to 499

stop 99
499 continue

C
c integration ioop
C

do 500 i = l,npts
c
c permute indices
c

nm3 = nm2
nm2 = nml
nml -nxt

c
c integrate orbit, harning permutes nxt
c

call haming(nxt)
c
c calculate r dot v
c

qid : f~l,nxt)
q2d -f(3,nxt)
rdotv(nxt) = (x(l,nxt)-xmu)*qld + x(3,nxt)*q2d

c
c check for peri/apoapse crossing
c

if Crdotv~nxt)*rdotv(nml).gt.0.dO) go to 500
c
c crossing has occured!
c interpolate to crossing time
C

frac =-rdotv~nxt)/( rdotv(nxt) - rdotv(nml))
qIc -frac*x(l,nml) + (l.dO + frac)*x(l,nxt)
q2c -frac*x(3,nml) + (l.dO + frac)*x(3,nxt)
xcross -qlc - xmu
ycross - q2c

c
c compute conjugate momenta plc and p2c for qic and q2c
c

nc = (Cqlc-xmu)**2.d0 + q2c**2.dO)**.Sd0
r2c - (Cqlc+xmua)**2.dO + q2c**2.dO)**.5d0
dd - xham + xmua/rlc + xmu/ r2c
gg - q2cI (qlc-xmu)
aaggg lO

b= .d* (gg;g*xmu +gg*q2c +qlc)
cc ( gg*xmu)**2 do + 2.dO *gg*q2c*xmu - 2.dO*dd
p2c (-bb+syn* (bb*bb-4.dO*aa*cc) **.5dO) / 2.dO*aa)
PlC gg*(xmu..p2c)

write(3,*) i,x(l,nxt)
write (2,*) xcross,ycross

500 continue

close (2)
close (3)
stop
end

67



ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c PROGRAM PERIOD
C
c PURPOSE: Calculate periodic trajectory via iterative
c integration technique. Once found, determines
c eigenvalues, eigenvectors, and Poincare exponents
c for periodic trajectory at t-0.
c
c SUBROUTINES: IIA1ING.F
c RHSl.F
c H.F
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

progiram po

common /lam/ xlambda(4)
common /data/ xmu,xmua
common /ham/ t, x(20,4),f(20,4),err(20),nn,hh,mode

c
c local variables
c

implicit double precision (a-h)
implicit integer (i-n)
implicit double precision (o-z)

dimension xlambda(4),x(20,4),f(20,4),err(20),cerr(2,I),b(2,2)
dimension phi(4,4),xxx(10),wk(50),xww(2),rvecC2,16)
dimension tvec(16 2),alpha(4),tnvec(16,2),xreal(4),ximag(4)
comylex*16 w(4),vecC4,4),ww
equivalence (ww. xww)
equivalence (vec. rvec)
character*lO filnaml. filnam2

c
c read input data

read(*,*) xmu,xmua
read(*,* ) period,npts
read(*:*) xO~y
read(*,* tol maxit
read (*,* xjacob
read(*,* filnaml
read(*:*) filnam2

c calculate timestep
c

hh -period/(dble(npts))
c
c calculate ql,pl~q2,p2 for given xO,yO, and jacobian
c

q1 - xO + xmu
q2 - yO
xham - (xmu*xmua--xjacob)/2.dO
rl =(Cql-xmu)**2.dO + q2**2.dO)**.Sd0
r2 C(ql+xmua)**"2.dO + q2**2.dO)**.Sd0
dd xhan + xmua/rl + xmu/r2
gg =q2/(ql-xmu)
aa g g*gg + 1 dO
bb -3.dg* (gg;gg*xmu + g*q2 + qi)
cc =(gg*xmu)**2 dO + 2.dO *gg*q2*xmu - 2.dO*dd
p2 =(-bb+(bb*bb-4.d0 * aa*cc) **.SdO)I(2.d*aa)
p1 gg*(xmu-p2)

c
c echo inputs to output file
c

open (3, file=filnaml, status='unknown')

write(3,*) 'xmu -',xmu,' xmua = ,xmua
write(3,*) 'orbit period. npts '.period,npts

write(3,*) 'qlO ',l'pO 'p1
write(3.*) 'q20 = 'q2,' p20 '.Ip2
write(3 ,* tol , maxit',tol,maxit

C
c begin iteration loop
c

do 1000 iter - l~maxit
c
c set up initial state
C

X(l 1) ql
x(2:1) p1
x(3 1) =q2
x(4,1) -p2

c
c write progress
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C
write (3,)
write (3, *) 'iteration', iter
write(3,*) 'ql=',ql:' pl:',pl
write(3,*) 'q2 'q2, p2 Ip2

c initialize phi matrix
C

do 100 i - 1,4
do 101 j - 1,4

ij = 4*i+J

11 x(i,l) -l.dO
100 continue

c
C initialize integration constants
C

mode 1
nn - 20
nxt = 0
t = 0.dO

C
C initialize haming
c

call haming(nxt)

if(nxt .ne. 0) go to 499
write (*,*) 'failure to initialize'
stop 99

499 continue
c
c integration loop
c

do 500 i ' 1 npts
call haming(nxt)

500 continue
c
c extract error vector
c

cerr(l,l) -- x(2,nxt)
cerr(2,1) -- x(3,nxt)

c
c extract correction matrix
c

b(l,l) - x(9,nxt)
b(1,2) - x(12,nxt)
b(2,l) =x(13,nxt)
b(2,2) = x(16,nxt)

C
c calculate state corrections
c

call leqt2f(b,l,2,2,cerr,idig,xxx,ier)
c
c add in corrections
C

q1l ql + cerr(l,l)
p2 -p2 +. cerr(2,l)

c
c check for convergence
c

iend - 0
if(dabs~cerr(l , )) .gt. tol) iend = I
if(dabs~cerr(2,l)) .gt. tol) Lend = 1
if~iend .eq. 0) go to 2000

1000 continue

c
C maximum iterations excecded without ccnvergence
c

write (*,*) 'Iteration Limit Exceeded'
stop

2000 continue
C
c converged processing
c

write (3. *)
write (3, *) 'program converged in' ,iter, 'iterations'
write (3, *)
write(3,*) 'converged state values'
writc(3 * ) 'ql=',x(l,nxt),'pl-,x(2,nxt)
write(3,*) 'q2 'x(3,nxt),'p2-',x(4,nxt)
write(3, *)
write(3,*) 'surface of section coordinates'
write(3,*) Ix 'I,x~l,nxt)-xmu,'y =',x(3,nxt)
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write (3, *
C
c compute hamiltonian/jacobian

qi - x~l,nxt)
p1 - x(2,nxt)
q2 - x(3,nxt)
p2 - x(4,nxt)
ri dsqrt((ql-xmu)**2.dO + q2**2.dO)
r2 =dsqrt((ql+xmua)**2.d0 + q2**2.dO)
xham, = .5d0*(pl*p1+p2*p2) + pl*q2 - p2*ql -xmua/rl -xmu/r2

xJac - xmu*xmua - 2.d0*xham

write(3,*) 'ham =',xham,'Jac =',xjac
C
c extract phi

do20C ,
do 2005 ± -1,4

phi(i, J) = x(4*i+j,nxt)
2005 continue

C
c compute eigen values and vectors of phi

call eigrf(phi,4,4,2,w,vec,4,wk,ier)

c transpose rvec, store as tvec
c

do 19 i=1,16
ii - (i/4.1)+l

alpha(ii) = 0.dO
do 19 j=1,2

tvec~i,j) = rvec(j,i)
19 continue

c
c normalize eigenvector matrix
c

do 21 i-1,16
ii. (i/4.1)+l

do 21 j-.1 2
alp a(ii) =alpha(ii) + tvee(i,j)**2.dO

21 continue

do 23 i-1,16
ii = (i/4.l)+l
do 23 J=1,2
tnvec(i,j) -tvecci,j)/dsqrt(alpha~ii))

23 continue

write (3, *)
write(3,*) 'normalized eigenvectors of phi, by column'
do 24 z-1,16

write(3,7) tnvec~i,l) ,tnvec(i,2)
24 continue

7 format(lx,2(f20.13,lx))
c
c compute Poincare exponents
c

write (3, *)
write(3,*) 'Poincare exponents'
do 2100 i = 1,4

ww = w(i)
c complex log of eigenvalue over period

*xreal(i) - dlog(dsgrt(xww(l)*xww(l) + xww(2)*xww(2)))
ximag(i) - datan2( xww(2), xww(l) )Iperiod
w4rite(3,5) xreal Ci) ,xinag(i)

2100 continue
5 form-.at(3x,2(e20.l3,lx))

c
c create input file for flo.f and fho.f
c

open (2, file=filnam2, status-' unknown')

write(2,*) xmu,' ',xmua
write(2 * ) period' ',npts
write (2,*) x(1,nxt), ',x(4,nxt)
write (2, *)

C
c write normalized cigenvector parts by column
C - if complex first leave alone
c - if real first, switch order
c

it -0

if ((tnvec(1,2).eq.0d0).and.(tnvec(2,2).eq.0.dO)) jt-8
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do 25 J-1,2
do 25 i1l+jt.4+jt

write(2,*) tnvec~i,j)
25 continue

do 26 i=9-jt, 16-it
write(2,*) tnvec(i,l)

26 continue
C
c write poincare exponents for j matrix
c -- if complex first leave alone
c - if real first, then switch
c

if (ximag(1).eq.O.dO) then

write (2. *)
write (2. *) xreal (3)
write(2,*) ximag(4)
write(2,*) O.dO
write(2,*) 040O
write(2,*) ximag(3)
write(2,*) xreal(4)
write(2,*) O.dO
write(2,*) 0.dO
write(2,*) 0.dO
write(2,*) O.dO
write(2,*) xreal (1)
write(2,*) ximag(2)
write(2,*) 0.dO
write(2,*) 0.dO
write(2,*) ximaq(1)
write(2,*) xreal(2)

el se
write (2.')

write (2,*) ximag(2)
write(2,*) 0.dO
write(2,*) 0.dO
write(2,*) ximay(1)
write(2,*) xrea 1(2)
write(2,*) 0.dO
write(2,*) 0.dO
write(2,*) 0.dO
write(2,') 0.dO
wite(2,*) xreal(3)
write(2,*) ximag(4)
write(2,*) 0.dO
write(2,*) 0.dO
write (2,*) ximaq(3)
write(2,*) xreal (4)

endif

close(2)
close(3)

stop
end
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cc',"ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c PROGRAM FLOQUET/FOURIER

c~ PURPOSE: Propagates the state and eigenvectors of a periodic
c orbit. as determined by program period. Every value
c during the integration is saved, and then converted
c into a fourier series.
c
c SUBROUTINES: HAMING.F
c RHS2.F
C H.F
c FOURIER.F
C
Cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

program fl

common /lam/ xlarnbda (4)
common /data/ xmu,xmua xj(4,4)
common /ham/ t~x(20,4),f(20,4),errC2O).,nn,hh,mode

C
c local variables
C

implicit double precision (a-h)
implicit integer (i-n)
implicit double precision (o-z)
dimension xlambdaC4),x(20,4),f(20,4),err(20),temp(100),ck(51)
dimension xic(2),xj(4,4),xO(16),s(4,1lCO),v(4,4,100),sk(51)

c
c read input data
c

read (*)xmu,xmua
read (*)period, npts

do 10 i-1,4
do 10 J=1l,4
ii - (J-1)*4 + i
read (*, *) xO (ii)

10 continue

do 20 1-1,4
do 20 J'1,4

read (*,*) xj(j,i)
20 continue

hh = period/(dble~npts))

write (** xmu = ',xmu,' xmua = ,xmua
write :** orbit period, npts ',period,npts
write (** timestep ',hh
write (,)'initial conditions (ql, p1=0, q2=0, p2)'
write (** ql = ',xic(l),' p2 = I',xic(2)
write (*

write 1** f(0)'
do 30 i=1,13,4
write (*,l) xO(i),xO(i+l),xO(i+2),xO(i+3)

30 continue
1 format(lx,fl8.10,fl8.10,fl8.l0,fl8.1O)

write (*,*)
write (*,*) 'xj(i,j)'

do 40 i=1,4
write (*,l) xj(i,l) ,xj(i,2) ,xj(i,3) ,xj(i,4)

40 continue
c
c set up initial state
c

x(2,1) =0.dO
x(3,1) - 0.dO
x(4,l) - xic(2)

c
c initialize f(0) matrix
c

do 160 i - 1,16
x(ii-4,I) = xO(i)

160 continue

mode = 1
nn - 20
nxt =0
t -0.dO

c
c initialize haming
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C
call harning(nxt)

if(nxt .ne. 0) go to 499
write (,)'failure to initialize'

write (,)f(l,l),f(2,l)
write (,)f(3,l),f(4,l)
s top 99499 continue

C
c integration loop
C

.do 500 i1 10
do 501 j -'1,4
S ( j ) 07 x 0, nxt)
do1 50 k '1,4
v(J~k i) - x(4*J+k,nxt)

501 continue
do 502 m - 1,10

call haming~nxt)
502 continue
500 continue

c
c open output file
C

open (2, file-' coef. fou' ,status=' unknown')
c
c copy eig values/vectors and feed to fourier
c

do 515 =1,4
do 5109i=1,lO0

temnp(i) - s (j, i)
510 continue

call fourier (temp1 ck, sk, 50)
do 520 k-1,50
write(2,*) ck(k),sk(k)

520 continue
515 continue

do 525 i=1,4
do 525 1~,4
do 530 k=1,l00

tenip~k) = v~j,i,k)
530 cont inue

call fourier (temp, ck, sk, 50)
do 535 mn-1,5 0

write(2,*) ck(rn),sk(m)
535 continue
525 continue

c
c final state conditions
c

write(*)
write(*,*) 'state at tf'
write(*,*) t ql=',x~l,nxt),' pl=',x(2,nxt)
write(*,*) , q2=',xC3,nxt),' p2=',xC4,nxt)

write (*,*)
write (*,*) 'f(t)'
do 600 i=5,17,4
write (*,l) x(i,nxt),x(i+l~nxt),x(i+2,nxt),x(i+3,nxt)

600 continue

close (2)
stop
end
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c PROGRAM FLOQUET/HAMILTONIAN
c
c PURPOSE: Calculate period coefficients needed in the new
c excpanded hamiltonian,' from the third order
c hamiltonian of the periodic trajectory. Compute
c after each integration step, and convert the result
c into a fourier series.
c
c SUBROUTINES: HAMING.F
c RHS2.F
c H.F
c FOURIER.F
c
Cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

program fh

common /lam/ xlambda(4)
common /data/ xmu,xmua,xj(4,4)
common /ham/ t,x(20,4),f(20,4),err(20),nn,hh,mode

c
c local variables
c

implicit double precision (a-h)
implicit integer (i-n)
implicit double precision (o-z)
dimension xlambda(4),x(20,4),fC20,4),err(20),xh3C4,4,4)
dimension xicC2),xj C4,4),xO(16),xxC4),vl(4),v2(4)
dimension tc(8),c(4 ,100),ck(100),sk(1OO),temp(100)

c
c read input data
c

read *,)xmu,xmua
read (,)period, nptread **)xic(1),xic(2)

c transpose col to row to fit x(20)
c

do 10 i=1,4
do 10 J-1,4
ii ; (J-1)*4 + i
read (*,*) xO~ii)

10 continue

do 20 1-1,4
do 20 J=1,4

read (*,*) xj(j,i)
20 continue

hh - period/(dble(npts))
c
c output inputs
c

write (** xmu - ',xmu,' xmua - ,xmua
write (** orbit period, npts ',period,npts
write (** timestep ',hh
write *, 'initial conditions (qi, pl-.O, q2=0, p2)'
write (** ql = ',xic(1),' p2 ='xic(2

write(*)

write (** 1f(0)'
do 30 1-1,13,4

write (*,1) xO(i),x0(i+1),xO~i+2),xOi+3)
30 continue
1 format~lx,4(fl8.10))

write (*,*)
write (*,*) 'xj(i,j)'
do 40 i-1,4

write (*,l) xj(i,l),xj(i,2),xj(i,3),xj(i,4)
40 continue

c
c set up initial state
c

x(1,l) -xic(1)
x(2,l) =0.dO
xC3,l) - 0.dO
x(4,l) =xic(2)

c
c initialize f(0) matrix
c

do 160 i = 1,16
x(i+4,lI) - xO(i)

160 continue
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mode - 1
nn - 20
nxt - 0
t - 0.dO

C
c initialize haming
C

call haming(nxt)

if(nxt .ne. 0) go to 499
write (**) falu re to initialize'
write *,)f(l,1),f(2,1)
write (,)f(3,l),f(4,1)

stop 99
499 continue

c
c begin integration loop
c

do 500 i 1,100
do 510 j - 1,4

xx(j) =x( j,nxt)
V18 ) -x(4*J+1,nxt)
v2( j) =x(4*J+2,nxt)

510 continue
c
c compute third order hamiltonian tensor
c

do 520 j-1,4
do 520 k=1,4
do 520 m =1,4

xh3(j,k,m) - h(xx,3,j,k,m,0,0)
520 continue

do 525 J=1,8
tc(J) = 0.dO

525 continue
c
c compute periodic coefficients
c

do 530 1~,4
do 530 k=l1,4
do 530 m-1,4

tc~l) = tc(1) + xh3(j k,m) * v1~) vl(k) * vl(m)
tc(2) = tc(2) + xh3CjI k,m) * vl(j * v2Ck) * vl(m)
tcC3) - tc(J) + xh3(jIk,m) v2(j vi~k) * vl~m)
tc(4 - tc(4 + xh3(j k m) v1(]) * vi~k) *v2(m)
tc(5) - tc(5) + xh3(j:k~m) *v2(j) * v2(k) * vl(rn)
tc(6) - tc(6) + xh3(j, k :m) *vici) * v2(k * v2(m)
tc(7 - tc(7 + xh3(j k m) *v20j) * vl(k) * v2(m)
tcC8) = tc(8) + xh3(j:k ,m) *v20j) * v2(k) * v2(m)

530 continue

c(l,i) = tc(1)/6.dO
c(2,i) = (tc(2)+tc(3)+tc(4))/6.dO
c(3,i) =(tc(5)+tc(6)+tc(7))/6.dO
c(4,i) = tc(8)/6.dO

do 550 m - 1,10
call haming(nxt)

550 continue
500 continue

c
c compute fourier coefficients from periodic ones
c

open (2, file='coef.ham',status-'unknown')

do 570 i=l,4
do 580 J=1,100

temp(j) = cUi,J)
580 continue

call fourier (temp, ck, sk, 50)

do 590 k-1,50
write(2,*) ck(k),sk(k)

590 continue
write (2, *)

570 continue
c
c final state conditions
c

writeC*)
write(*,*) 'state at tf'
write(*,*) I ql-',x(l,nxt),' pl=',x(2,nxt)
write(*,*) I q2-',xC3,nxt),' p2-',x(4,nxt)
write(**
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write (*,*) 'f(t)'
do 600 i=5,17,4
write (*,1) x(i,nxt),x(i+l,nxt),x(i+2,nxt),x(i+3,nxt)

600 continue

close(2)
stop
end
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccC PROGRAM EXACT
C
c PURPOSE: integrates a nearly periodic trajectory,' subtracts
c the periodic reference, and transforms the result
c into modal variables, and creates a plotfile
c bl vs b2.
c
c SUBROUTINES: HAMING.E'
c RIISI.F
c .
c
Cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

program check
c
c problem commons
c

common /data/ xmu,xcmua
common /lam/ xlambda(4)
common /ham/ t,x(20,4),fC20,4),err(20),nn,hh,mode

c
c variable declarations
c

implicit double precision Ca-h)
implicit integer (i-n)
implicit double precision (a-z)
character*l0 fi lnaml, filnam2, filnam3

dimension xlarnbda(4),x(20,4),f(20,4),err(20)
dimension sinn(50),coss(50),ck(20,50),sk(20,50),cf(20)
dimension cc(4,4),xxC4),dx(4),xxxC5O)

c
c input data
c

read(*,*) xmu,xmua
read (*, *) period, npts
hh = period/(dble(npts))
read(*,*) xnot,ynot
read(*,*) xjac,syn
read(*:*) w,trip
read(*,*) filnaml
read(*,*) filnam2
read(*,*) filnam3

do 100 i=1,20
do 100 J-1,50

read(*,*) ck(i,j),sk(i,j)
100 continue

mode -0
nn - 4
nxt = 0
t = 0.d0

pi - dacos(-l.dO)
wO - 2.dO*pi/period

c
c get ql,pl,q2,p2 for given xO,yO, and jacobian
c

qi = xnot + xmu
q2 - ynot
xham - (xmu*xmua-xjac)/2.d0
rl = ((ql-xmu)**2.d0 + q2**2.dO)**.5d0
r2 = ((ql+xmua)**2.dO + q2**2.1dO)**.5d0
d =xham + xmua/rl + xmu /r2
g =q2/(ql-xmu)
a =g*g + l.dO
b -2.d0*(g*g*xmu + g*q2 + q1)
c =(g*xmu)* 2.dO + 2.dO*g*q2 xmu -2.dO~d

p2 =(;b+syn*(b*L-4.d0*a*c)**.5d0)/C2.d0*a)
p1 g*(xmu-p2)

write(*,*) 'initial conditions (Jefferys)'
write(*,*) 'xO=',xnot,' yO=',ynot
write (*,*)
write(*,*) 'initial conditions (Szebehely)'
write(*,*) 'ql-',ql,' Pl-,p
write(*,*) 'q2=',q2, p2-',p2
write (*,*)
write (*,*) 'jacobian=', xJac
write(*,*) 'period-',peri od
write (*:*)
write(*,*) 'initial conditions (Modal)'

c
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c initial conditions
c

x(l:l) =q1

x(2 'L) =p1

x (3 l) =q2

x(4:1) -. p2

c initialize harning
C

call harning(nxt)
C
c turn off second EOM eval
c

nxt = -nxt
if(nxt .ne. 0) go to 499

stop 99
499 continue

c
c open output files
c

open (2, file-filnami, status-' unknown')
o3pen (3, file=filnam2, status=' unknown')
open (4, file-filnarn3,status='unknown')

c integration loop

do 500 i = 0,npts*trip

if (rod(i,20).eq.0) then

c
c compute sin(n*theta), cos(n*theta), n=l to 50
c

coss(l) =dcos(wO*t)
sinn(i) - dsin(w0*t)
coss(2) - 2.dO*coss(1)*coss(l) - 1.dO
sinn(2) - 2.d0*sinn(I)*coss(1)

do 200 J=3,50
coss(J) = 2.d0*coss(j-1)*coss(l) - coss(J-2)
sinn(j) = 2.dO*sinn(j-l)*coss(l) - sinn(J-2)

200 continue
c
c reassemble periodic traj and eigenvector matrix
c

do 300 k-1,20
cf(k) = ck(k,1)
do 300 J=1,49
cf(k) -cf(k) + ck(k,j+l)*coss(j)

30 oniu + sk(k,j+l)*sinn(j)

c write(*,*)
c do 301 j 1,20
c write( *,*) cf(J)
c 301 continue

c
c compute generalized eigenvector (grad of hamiltonian)
c

do 320 3=l14
xx(j) =cf(j)

320 continue
temnp = 0.dO
do 330 J=1,4

dx( 3) = x(j,iabs(nxt)) - cf(j)
cf (1 6+) = h(xx,l, 3,0,0,0,0)
temp = temp + cf(1 6+J)*cf(16+J)

330 continue

c write(**
c do 331 j=1,4
c write(*,*) cf(16+j)
c 331 continue

do 335 J-1,4
cf(16+j) = cf(16+j)/(dsqrt(tomp))

335 continue

c write(**
c do 336 J-1,20
c write( * *) cf(J)
c 336 continue
c
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c place eigenvectors in 4xA matrix (for inversion)
C

do 340 1~,4
do 340 1:1,4

jj = 4*J+k
cc(k J) - cf(jj)

340 continue

C
c invert delta x = eigenvector matrix * b
C

idig - 0

call leqt2f(cc,l,4,4,dx,idig,xxx,ier)

if Ui eq.0.dO) then
write(*,*) 'blO..',dx(l),' b20-',dx(2)

endif

write(2,*) dx(l),dx(2)
write(3,*) t,dx(3)
write(4,*) t,dx(4)

endif

call haming(nxt)

500 continue

close (2)
stop
end
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c PROGRAM EXPANDED
c

c PUROSE:sing h periodic coefficients made by the programc floquet/hamiltonian, the eom for the truncated
c hamiltonian case are integrated. A plotfile
c matching bi vs b2 is created.
C
c SUBROUTINES: HAMING.F
c RHS3.F
c
cccccccccccccccccccccccccccccccccccccccccccccccceccccccccccccccccc

program k3

common /data/ w0,w~ck(4,50),sk(4,50)
common /ham/ t~x(20,4),f(20,4),err(20),nn,hh~mode

c
c local variables
c

implicit double precision (a-h)
implicit integer (i-n)
implicit double precision (o-z)
character*10 filnam

dimension x(20,4),f(20,4),err(20)
dimension ck (4,50), sk (4, 50)

c
c read input data
c

read (**Eeriod,npts
read 10*)bl,b20
read (*)w,trip
read(*,*) filnam

c
c read fourier coefficients
c

do 20 i=1,4
do 20 J-1,50

read (,)ck(i,j),sk(i,j)
20 continue

hh = period/(dble(npts))
c
c output inputs
c

write (** orbit period, npts ',period,npts
write (** timestep ',hh
write ( , 'initial conditions (modal)'
write (** blO=',blO,' b20=',b20

c
c set up initial state
c

x(l,l) - blO
x(2,l) = b20

mode - 0
nn - 4
nxt - 0
t - O.dO

pi = dacos(-l.dO)
wO = 2.dO*pi/period

c
c initialize haming
c

call haming(nxt)

if(nxt .ne. 0) go to 499
write (,)'failure to initialize'
write (*)f(l,l),f(2,1)
write (*)f(3,l),f(4,1)

stop 99
499 continue

c
c begin integration loop
c

open (2. filewfilnam, status-'unknown')

do 500 1 - lnpts'trip
call hamin (nxt)
if (nod (1,100) .ne.0) go to 500
write(2,*) x(l,nxt),x(2,nxt)

500 continue
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close (2)
stop
end
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c SUBROUTINE HAMING

c PURPOSE: iaming is an ordinary differential equations
c integrator. It is a fourth order
c predictor-corrector algorithm that carries the last
c four values of the state vector, extrapolates
c them to obtain the next value (the prediction part),
c and then corrects the extrapolated value to find a
c new value for the state vector. Nxt specifies which
c of the 4 values of the state vector is the "next"
c one. Nxt is updated by haming automatically, and is
c zero on the first call. The user supplies an
c external routine rhs(nxt), which evaluates the
c equations of motion
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine haming (nxt)

common /ham/ x,y(20,4),fC2O,4),errest(20),n,h,mode
implicit double precision (a-z)
dimension y (20.4),*f(20, 4) ,errest (20)
integer i,i1,nxt,n,npl,nml,nm2,npo,isw,jsw,mode

c
c x is the independent variable ( time
c y(6,4) is the state vector- 4 copies of it, with rxt
c pointing at the next one
c f(6,4) are the equations of motion, again four copies
c a call to rhs(nxt) updates an entry in f
c errest is an estimate of the truncation error - normally not
c used
c n is the number of equations being integrated - 6 or 42 here
c h is the time step
c mode is 0 for just EOM, 1 for both EOM and EOV
c

tol - 0.0000000001

if(nxt) 190,10,200

10 xo = x
hh = h/2.Od+00
call rhs(1)
do 40 1 = 2,4
x = x + hh
do 20 1 l,n

20yil) (i,l-1) + hh*f(i,1-1)
call rhs(1
x - x + hh
do 30 i = ,n

30 y(i 1) -yil-1) +- hf(i,l)
40 call rhsC1

Jsw - -10
s0 isw - 1

do 120 i l ,n
hh - y(i,l) + h*( g.Od+00*f(i,1) + 19.Od+00*f(i,2)

1 - 5.Od+00*f(i,3) + f(i,4) ) / 24.0d+00
if( dabs( hh - y(i,2)) It. tol )go to 70
isw = 0

70 y(i,2) - hh
hh- y(i,l) + h*( f(i,l) + 4.Od+00*f~i,2) +~ f(i,3))/3.Od+00
if( dLbs( hh-y(i,3)) Ilt. tol ) go to 90
isw . 0

90 K(i,3) - hh
hh- yVi,l) + h*C 3.0da+00*f(i,l) + 9.0d4-00*f(i,2) +

1 .Od+00*f(i,3) + 3.Od+00'f(i,4) ) I 8.0d+00
if( dabs(hh-y(i,4)) Ilt. tol )go to 110
isw - 0

110 y(i,4) = hh
120 continue

x -xo

do 1 30 1 - 2,4
x x +h

130 call rhs(l)
if(isw) 140,140,150

140 Jsw.- jsw +- 1
if(jsw) 50,280,280

150 X - xo
isw - 1
Jsw - 1
do 160 1 l ,n

160 errest(i) -0.0

nxt = 1
g9 o to 280

10sw - 2

82



nxt - iabs(nxt)
c
c this is hamings normal propagation loop -
c
200 x = x + h

npl - mod(nxt,4) + 1
go to (210,230),isw

c permute the index nxt modulo 4
210 go to (270,270,270,220),nxt
220 isw 2
230 nm2 - mod(npl,4) + 1

nml mod(nm2,4) + 1
npo - mod(nml,4) + 1

c
c this is the predictor part
c

do 240 i - 1,n
f(i,nm2) - y(i,npl) + 4.0d+00*h*( 2.0d+00*f(i,npo) - f(i,nml)

1 + 2.0d+00*f(i,nm2) ) / 3.0d+00
240 ,(i,npl) = f(i,nm2) - 0.925619835*errest(i)

c
c now the corrector - fix up the extrapolated state
c based on the better value of the equations of motion
c

call rhs(npl)
do 250 i 1,n
y(i,npl) = ( 9.0d+00*y(i,npo) - y(i,nm2) + 3.0d+00*h*( f(inpl)

1 + 2.0d+00*f(i,npo) - f(i,nml)) ) I 8.0d+00
errest(i) = f(inm2) - y(inpl)

250 y(i,npl) = y(i,npl) + 0.0743801653 * errest(i)
go to (260,270),jsw

260 call rhs(npl)
270 nxt = npl
280 return

end
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C
c SUBROUTINE RHSl
C
c PURPOSE: Computes the right-hand side of the equations of
c motion and variation, in the restricted three-body
c problem.
C
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine rhs(k)
C
c canonical EOM and EOV, 4th order system
c

common /lamI xlanbda (4)
common /data/ xmu, xmua
common /ham/ t, x(20,4),f(20,4),err(20),nn,hh,mode

c
double precision t,x,f,err,hh
double precision xlambda,xmu,xmua
double precision h,xx(4),z(4,4),grdh(4,4),temp(4,4)

c
data z/ 0.dO, -l.dO, 0.dO, 0.dO,
1 1.dO, 0.dO, 0.dO, 0.dO,
2 0.dO, 0.dO, 0.dO, -1.dO,
3 0.dO, 0.dO, 1.d0, O.dO/

c
c extract state
c

do 10 1 1,4
xx(i) =x(i,k)

10 continue
c
c equations of notion
c

f(,k) -h(xx,1,2,0,0,0,0)
f(2,k) - -h(xx,1,1,0,0,0,0)
f(,k) - h(xx,1,4,0,0,0,O)
f(4,k) = -h(xx,l,3,0,0,0,0)

c
if(mode .eq. 0) return

c
c calculate order 2 gradient matrix
c

do 20 1 - 1,4
do 20 j - 1,4

20 ontnuegrdh(i,j) = h(xx,2,i,j,0,0,0)

c
c matrix mpy by z
c

do 30 1 - 1,4
do 30 ii - 1,4

temp (i,ii) - 0.dO
do 30 j - 1,4

30 cotinue temp(i,ii) - tem~p(i,ii) + z(i,j)*grdh(j,ii)

c
c calculate A phi
c

do 35 1 - 1,4
do 35 ii = 1,4

ij - 4ii
f(ij,k) - 0.dO

do5 1,4

35 cotinue f(ij,k) - f(ij,k) + ternp(i,j)*x(4*j+ii,k)

C
c check if propagating eigenvectors or phi
c

if(.-ode .eq. 1) return
C
c get Cigcnvector corn
c

do 40 J - 2,4,2
do 40 ii - 1,4

11 7 4'(J-l) + II
f!jk (ij,k) + xlambda j )*x(ij+4,k)

40 ontnuef(ij;4 k) -f(ij+4,k) - xlar-.bda(j)*x(ij,k)

return
end
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c SUBROUTINE RHS2
c
c PURPOSE: Creates right-hand side of the corn for the
c restricted three-body problem, and for the
c eigenvector equation.
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine rhs(k)
c
C canonical EOM an~d EOV, 4th order system

common /lam/ xlambda(4)
common /data/ xmu xmua,xj(4,4)
common /ham/ t,x(20,4),*f(20,4) ,err(20) ,nn-,hh,mode

double precision x(20,4),f(20,4),err(20),fl(20,4),f2(20,4)
double preciaion xlambwda, xmu, xmua, t,hh
double precision h,xx(4),z(4,4),grdh(4,4),ep(4,4),xj(4,4)

data z/ OAdC, -l.dO, O.dO, 0.dO,
1 l.dO, O.dO, O.dO, 0.dO,
2 O.dO, O.d0, 0.dO, -l.dO,
3 O.dO, O.dO, l.dO, 0.dOI

c
c extract state
c

do 10 1 1,4
xx~i) =x(i,k)

10 continue
c
c equations of moti-on
c

f(l,3c) -h(xx,l,2.0,d.O,O)
f(2,k) - -h(xx,1,1,0,0,0,0J
f(3,k) - h(xx,1,4,0,0,0,0)
f(4,k) - -h(xxl1,3,O,0,G,O)

c
if (mode -eq. 0) return

c
c calculate order 2 gradient matrix
c

do 20 i - 1,4
do 20 j - 1,4

20 continue
c
c matrix mpy by z

do 30 i 1,4
do 30 11 1.4

temp (i,ii) - 0.dO
do 30 i - 1,4

30 cotinue temp(i,ii) a temp(i,ii) + z(i,j)*grdh(j,i.)

c
c calculate A phi and phi J
c

do 35 i - 1.4
do 35 i 1,4

f (i ,k) - 0.d0

do 2(~i~) - f2(ij,c) + x(4*L+J~k)*xjtj,ii)

35 cotinue fl(ij~k) - fl(ij,k) + terp(i,j)*x(4*j9ii,k)

do 36 i - 5,20
f(i,k) - fl(i,3c) - f2(i~k)

36 continue

return
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c SUBROUTINE RHS3
C
c PURPOSE: Calculate rhs for nearly-periodic eom, using
c expanded bamiltonian.
c
cccccccCccccccCCCccCCCeCCCCCCCCCCCCCCCCCCCCCeCCCCCCCCCCCCCC

subroutine rhs(k)
C
c canonical EOM and EOV, 4th order system

common /data/ w0,w,ck(4,50),skC4,50)
common /ham/ t,x(2O,4),fC20,4),err(20),nn~hh,mode

double precision t,x(20 4),f(20,4),err(20),hh,sinn(50)
double precision ck(4,50),sk(4,50),c(4,coss(50)W,wO~
double precision bl,b2

c
c generate sin(l to 50 * w0) and cos(l to 50 * wiO)
c

coss(l) - dcos(wO*t)
coss(2) - 2.dO*coss~l)*coss(l) - l.dO
sinn(l) -dsin(wO*t)
sinn(2) - 2.dO*sinn(l)*coss(l)

do 100 i=3,50
coss(i) = 2.d0*coss(i-l)*coss(l) - coss(i-2)
sinn(i) = 2.d0*sinn(i-l)*coss(l) - sinn(i-2)

100 continue

c
c reconstruct periodic function from coefficients
c

do 200 i=1,4
c(i) -ck(i 1)

do 200 J149
c(i) = c (i) + ck(i,j+l)dfcoss(j) + sk(i,j+l)*sinn(j)

200 continue

bl = x(l,k)
b2 = x(2,k)

c
c calculate bl dot and b2 dot
c

f(l,k) = w*b2 - bl*bl*cC2) +
* 2.dO*bl*b2*c(3) - 3.dO*b2*b2*c(4)
f(2,k) - w*bl - b2*b2*c(3) +

* 2.dO*bl*b2*cC2) - 3.dO*bl*bl*c(l)

return
end
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C
c FUNCTION H
c
c PURPOSE: Computes desired order tensor of the re~stricted
c three-body hamiltonian.
C

ccccccccccccccccccccccccccccccccccccccccccccceccccccccccccccccccc

function h(x,iord,i, j,k,1,m)
c
c state vector x =(qi, p1, q2, p2
C

common /data/ xmu,xmua
implicit double precision (a-z)
dimension x(4)
integer iord, jord,i, j,k

c
c preliminaries
c

qa - x(l) - xmu
qb - x(l) + xmua
rl =dsqrt(qa*qa + x(3)*x(3))
r2 = dsqrt(qb*qb + x(3)*x(3))

c
c branch on order
c

Jord = iord + 1
go to (1, 1000, 2000, 3000),jord

c
c **Order Zero *
c

1 continue
h - 0.5dO*(x(2)*x(2) + x(4)*x(4)) + x(3)*x(2) -x(l)*x (4)

1 - xmua/rl - xmu/r2
return

1000 continue
c
c **Order One *

c
r13 = rl**3.dO
r23 = r2**3.dO
go to (1001, 1002, 1003, 1004), i

1001 h = -x(4) + xmuatqa/r13 + xmu*qb/r23
return

1002 h = x(2) + x(3)
return

1003 h - x(2) + xmua*x (3) /r13 + xmu*x(3)/r23
return

1004 h =x(4) - x(l)
return

2000 continue
c
c **Order Two *

c
r13 = rl**3.dO
r23 = r2**3.dO
r15 = rl**5.dO
r25 =r2**5.dO

go to (2001, 2002, 2003, 2004),1
2001 go to (2011, 2012, 2013, 2014),j
2002 go to (2021, 2022, 2023, 2024),j
2003 go to (2031, 2032, 2033, 2034),j
2004 go to (2041, 2042, 2043, 2044),j

2011 h - xmua/r13 + xmu/r23 -3.d0*xmua*qa*qa/r15
1 -3.d0*xmu*qb*qb/r25
return

2012 h =0.dO
return

2013 h - 3.d0*xmua*qa*x(3)/rl5 -3.dO*xmu*qb*x(3)/r25

return
2014 h = -l.dO

return
2021 h = 0.dO

return
2022 h = l.dO

return
2023 hi = l.dO

return
2024 hi = 0.dO

return
2031 go to 2013
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2032 h 1.dO
return

2033 h = -3.d0*xmua*x(3)*x(3)/rl5 3.dO*xmu*x(3)*x(3)/r25
1 +- xmua/r13 + xmu/r23
return

2034 h =0.dO
return

2041 h = -1.d0
return

2042 h =0.d0
return

2043 h - 0.dO
return

2044 h =1.dO
return

3000 continue
C
C * Orcer Three *
C

r15 rl**5.d0
r25 = r2**5.dO
r17 = rl**7.dO
r27 = r2**7.dO

go to (30001, 30002, 30003, 30004),1
30001 go to (30110, 30120 , 30130, 30140),j
30002 go to (30210, 30220, 30230, 30240),J
30003 go to (30310, 30320, 30330, 30340),j
30004 go to (30410, 30420, 30430, 30440),j
c note matrix is quite sparse now..
30110 go to (30111, 30112, 30113, 30114),
30130 go to (30131, 30132, 30133, 30134):k
30310 go to (30311, 30312, 30313, 30314) k
30330 go to (30331, 30332, 30333, 30334):k

30111 h - -9 d0*xmua*qa/r15 - 9.dO*xmu*qb/r25
1 + 15.dO*xmua*qa*qa*qa/r17 +- 15. dO*xmu*qb*qb*qb/r27
return

30112 h = 0.dO
return

30113 h - -3.d0*xmua*x(3)/r15 - 3.dO*xmu*x(3)/r25
1 + 15.dO*xmua*qa*qa*x(3)/r17 + 15.dO*xmu*qb*qb*x(3)/r27
return

30114 h = 0.dO
return

30120 h = 0.dO
return

30131 go to 30113
30132 h = 0.dO

return
30133 h = _3.d0*xmua*qa/r15 - 3.dO*xmu*qb/r25

1 + 15.dO*xmua*qa*x(3)*x (3) /r17 + 15.dO*xmu*qb*x(3)*x(3)/r27
return

30134 h = 0.dO
return

30140 h = 0.dO
return

30210 h = 0.dO
return

30220 h =0.dO
return

30230 h - C.dO
return

30240 h = 0.dO
return

30311 go to 30113
30312 h = 0.dO

return
30313 go to 30133
30314 h = 0.dO

return
30320 h - 0.dO

return
30331 go to 30133
30332 -0.dO

return
30333 h = -9.d0*xmua*x(3)/r15 -9.dO*xmu*x(3)/r25

1 + 15.dO*(xmua/r17 + xmu/r27)*x(3)*x(3)*x(3)
return

30334 h - 0.dO
return

30340 h - 0.dO
return

30410 h - 0.dO
return
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30420 h -0.d0
return

30430 h - 0.dO
return

30440 h = 0.d0

return
end
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c SUBROUTINE FOURIER
C
c PURPOSE: harmonic analysis of 2n values of function F
c evenly spaced at interval 2pi/2n, starting with
c zero, into n+l cosine coefficients ck and n-i sine
c coefficients sk.
c
c ref Brouwer and Clemence, p 109
c
cccccccccccccccccccccccccccccccccccccccccccC..IccccccccccccccccCcc

subroutine fourier (F, ck, sk, n)

double precision FC2),ck(2),skC2),twopi,alpha

twopi = 2.dO*3.l41592653589d0
alpha = twopi/dble(2*n)
n2rnl - 2*n-1

c
c order kc loop
c

do 500 k = 0,n
c
c cosine sum
c

ck(k+l) 0 .d0

do 200U O,n2rnl
ck k+l) =ck(k+l) + F(J+l) *dcos( dble(k*j)*alpha)

200 continue

ck(k+l) ck(k+!)/dble(n)
c
c sine sum
c

if(k .eq. 0) go to 500
if(k .eq. n)got50
sk(k+l) = 0.d~ d o50
do 400 j - ,n2ml

sk(k+l) - skok+l) + F(J+l) *dsin( dble(k*j)*alpha)
400 continue

sk(k+l) = sk(k+l)/dble(n)

500 continue

c correct first and last cosine coefficient
c

ck(l) = 0.5d0*ck(l)
ck(n+l) = 0.5d0*ck(n+1)

return
end
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